Essay/Term paper: Photochemical smog
Essay, term paper, research paper: Chemistry
Free essays available online are good but they will not follow the guidelines of your particular writing assignment. If you need a custom term paper on Chemistry: Photochemical Smog, you can hire a professional writer here to write you a high quality authentic essay. While free essays can be traced by Turnitin (plagiarism detection program), our custom written essays will pass any plagiarism test. Our writing service will save you time and grade.
Photochemical Smog
Gifted Chemistry IB
Alternative Assessment
1997 March 19
Historically, the term smog referred to a mixture of smoke and fog, hence the
name smog. The industrial revolution has been the central cause for the increase
in pollutants in the atmosphere over the last three centuries. Before 1950, the
majority of this pollution was created from the burning of coal for energy
generation, space heating, cooking, and transportation. Under the right
conditions, the smoke and sulfur dioxide produced from the burning of coal can
combine with fog to create industrial smog. In high concentrations, industrial
smog can be extremely toxic to humans and other living organisms. London is
world famous for its episodes of industrial smog. The most famous London smog
event occurred in December, 1952 when five days of calm foggy weather created a
toxic atmosphere that claimed about 4000 human lives. Today, the use of other
fossil fuels, nuclear power, and hydroelectricity instead of coal has greatly
reduced the occurrence of industrial smog. However, the burning of fossil fuels
like gasoline can create another atmospheric pollution problem known as
photochemical smog. Photochemical smog is a condition that develops when primary
pollutants (oxides of nitrogen and volatile organic compounds created from
fossil fuel combustion) interact under the influence of sunlight to produce a
mixture of hundreds of different and hazardous chemicals known as secondary
pollutants. Development of photochemical smog is typically associated with
specific climatic conditions and centers of high population density. Cities
like Los Angeles, New York, Sydney, and Vancouver frequently suffer episodes of
photochemical smog.
One way in which the production of photochemical smog is initiated is through
the photochemical reaction of nitrogen dioxide (NO2) to form ozone. There are
many sources of photochemical smog, including vehicle engines (the number one
cause of photochemical smog), industrial emissions, and area sources (the loss
of vapors from small areas such as a local service station, surface coatings and
thinners, and natural gas leakage).
Vehicle engines, which are extremely numerous in all parts of the world, do not
completely burn the petroleum they use as fuel. This produces nitrogen dioxide
which is released through the vehicle exhaust along with a high concentration of
hydrocarbons. The absorption of solar radiation by the nitrogen dioxide results
in the formation of ozone (O3). Ozone reacts with many different hydrocarbons to
produce a brownish-yellow gaseous cloud which may contain numerous chemical
compounds, the combination of which, we call photochemical smog.
Both types of smog can greatly reduce visibility. Even more importantly, they
pose a serious threat to our health. They form as a result of extremely high
concentrations of pollutants that are trapped near the surface by a temperature
inversion. Many of the components which make up these smogs are not only
respiratory irritants, but are also known carcinogens.
There are many conditions for the development of photochemical smog:
1. A source of nitrogen oxides and volatile organic compounds.
2. The time of day is a very important factor in the amount of photochemical
smog present.
• Early morning traffic increases the emissions of both nitrogen oxides (NOx)
and Peroxyacetyl Nitrates (PAN) as people drive to work.
• Later in the morning, traffic dies down and the nitrogen oxides and
volatile organic compounds begin to react forming nitrogen dioxide, increasing
its concentration.
• As the sunlight becomes more intense later in the day, nitrogen dioxide is
broken down and its by-products form increasing concentrations of ozone.
• At the same time, some of the nitrogen dioxide can react with the volatile
organic compounds (VOCs) to produce toxic chemicals.
• As the sun goes down, the production of ozone is halted. The ozone that
remains in the atmosphere is then consumed by several different reactions.
3. Several meteorological factors can influence the information of photochemical
smog. These conditions include :
• Precipitation can alleviate photochemical smog as the pollutants are washed
out of the atmosphere with the rainfall.
• Winds can blow photochemical smog away replacing it with fresh air. However,
problems may arise in distant areas that receive the pollution.
• Temperature inversions can enhance the severity of a photochemical smog
episode. Normally, during the day the air near the surface is heated and as it
warms it rises, carrying the pollutants with it to higher elevations. However,
if a temperature inversion develops pollutants can be trapped near the Earth's
surface. Temperature inversions cause the reduction of atmospheric mixing and
therefore reduce the vertical dispersion of pollutants. Inversions can last from
a few days to several weeks.
4. Topography is another important factor influencing how severe a smog event
can become. Communities situated in valleys are more susceptible to
photochemical smog because hills and mountains surrounding them tend to reduce
the air flow, allowing for pollutant concentrations to rise. In addition,
valleys are sensitive to photochemical smog because relatively strong
temperature inversions can frequently develop in these areas.
Possible Solutions
A possible solution to the problem of photochemical smog is to enforce stricter
emission laws all over the globe. Many countries have varying laws on the legal
limits of NOx, Carbon Dioxide, and Sulfur Dioxide. For example, the United
States has a lower legal limit for CO2 than Mexico, which is just south of the
U.S. My point is that you can go from one country to another, and notice the
differences between the two levels of photochemical smog. If the world were to
enforce the same legal smog levels, we wouldn"t have to worry about
concentrations of smog in some places more than others.
Another possible solution is to come up with a cleaner burning fuel for
automobiles. Some cars already are being experimented running hydrogen,
electricity, solar power, and even water. The problem is that these automobiles
are not in mass production, therefore, leaving the world to rely on
gasoline/diesel as the primary source for power. If the world were to accept
the hydrogen car or electric car more openly and develop them for mass
production, we would have lower levels of the photochemical pollutants
altogether
Abstract 1
"Photochemical Smog and the Okanagan Valley"
Photochemical smog can be a significant pollution problem in the Okanagan Valley.
The Okanagan meets all the requirements necessary for the production of
photochemical smog, especially during the summer months. During this time period
there is an abundance of sunlight, temperatures are very warm, and temperature
inversions are common and can last for many days. The Okanagan Valley also has
some very significant sources of nitrogen oxides and volatile organic compounds,
including:
1. High emissions of nitrogen oxides and volatile organic compounds primarily
from burning fossil fuels in various forms of transportation.
2. The release of large amounts of nitrogen oxides and volatile organic
compounds into the atmosphere from forestry and agriculture. Forestry
contributes to the creation of photochemical smog creation in two ways: the
burning of slash from logging; and, the burning of woodchip wastes in wood
product processing plants. Agriculture produces these chemicals through the
burning of prunings and other organic wastes.
The idea that the Okanagan is immune to the big city problems of photochemical
smog may simply be wishful thinking. In fact, recent monitoring of ground level
ozone has shown that the values between here and the Lower Mainland are quite
comparable. In addition, research over a 4 year period (1985-1989) has shown
that ozone levels can at times be higher over the Okanagan Valley than the Lower
Mainland of British Columbia by almost 49 %.
Abstract 2
"The Photochemical Problem in Perth"
The Perth Photochemical Smog Study, a joint effort of Western Power Corporation
and the Department of Environmental Protection (DEP), was undertaken to
determine, for the first time, the extent to which photochemical smog had become
a problem in Perth.
Measurements of photochemical smog in Perth's air began in 1989, at a single
site in the suburb of Caversham, 15 kilometers north-east of the city center.
Despite the common perception that Perth is a windy city and therefore not prone
to air pollution, the first summer of measurements revealed that the city was
sometimes subjected to smog levels which approached or exceeded the guidelines
recommended by the National Health and Medical Research Council of Australia
(NHMRC).
In 1991 the State Energy Commission of Western Australia (SECWA, now Western
Power Corporation) sought to extend the capacity of the gas turbine power
station it operated at Pinjar, some 40 kilometers north of the Perth central
business district. In view of the Caversham data, the Environmental Protection
Authority expressed concern that increasing the NOx emissions at Pinjar could
contribute to Perth's emerging photochemical smog problem which, at that stage,
was poorly defined.
A consequent condition on the development at Pinjar was that SECWA undertake a
study of the formation and distribution of photochemical smog in Perth, a
particular outcome of which would be to determine the effect of the Pinjar power
station's emissions on smog in the region.
Given the DEP's concerns and responsibility in relation to urban air quality,
the Perth Photochemical Smog Study (PPSS) was developed as a jointly operated
and managed project, funded by SECWA and with DEP contributing facilities and
scientific expertise.
The primary objective of the Perth Photochemical Smog Study was to measure, for
the first time, the magnitude and distribution of photochemical smog
concentrations experienced in the Perth region and to assess these against
Australian and international standards, with consideration given to health and
other environmental effects.
The study's monitoring and data analysis program was very successful in defining
the distribution of Perth's smog. The Perth region experiences photochemical
smog during the warmer months of each year. On average, during the three year
period July 1992 to June 1995, there have been 10 days per year on which the
peak hourly ozone concentration exceeded 80 parts per billion (ppb) somewhere
over the Perth region.
Bibliography
1. Cope, M.C. and Ischtwan, J., 1995, "Perth Photochemical Smog Study, Airshed
Modelling Component", EPA of Victoria, August 1995.
2. Minderly, Calvin 1995, "Photochemical Smog and the Okanagan Valley",
Okanagan University Publishings, June 7-8, 1995.
3. Pidwirny, Michael, Gow, Tracy, et al. "Photochemical Smog", Microsoft
Encarta 1996 Multimedia Encyclopedia. Microsoft Corporation, 1996.
4. Woodward, A.J., Calder, I., McMichael, A.J., Pisaniello, D., Scicchitano, R.,
Steer, K. and Guest, C.S., 1996, "Options for Revised Air Quality Goals for
Ozone (Photochemical Oxidants)", Project Report to the British Commonwealth
Department of Health, Housing and Community Services, August 1993.